If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-24x-9=0
a = 6; b = -24; c = -9;
Δ = b2-4ac
Δ = -242-4·6·(-9)
Δ = 792
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{792}=\sqrt{36*22}=\sqrt{36}*\sqrt{22}=6\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-6\sqrt{22}}{2*6}=\frac{24-6\sqrt{22}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+6\sqrt{22}}{2*6}=\frac{24+6\sqrt{22}}{12} $
| (5x+10)-90-90=360 | | -5+4y+2y=3y-11+y | | 1+y/2=-2(y+1) | | (5x+10)-90+90=360 | | 1x+16=5x | | 109=65+.80m | | (5x+10)-90-270=360 | | 3/5p=5 | | (5x+10)-90-135=360 | | (5x+10)+90-135=360 | | 4=+8p-6p-5+20p | | (5x+10)-135+135=360 | | -6s=72 | | -2(-5y+9)=8(y-1) | | (5x+10)-90+135=360 | | 80+65a=85a | | (5x+10)+270-135=360 | | 4=b+8/7 | | (5x+10)-270+135=360 | | 21=-7(a-4) | | 2+(3–x)=8−2x | | (5x+10)-270+90=360 | | -4s=63 | | 3m+18=-21 | | 1x+13+1x=1x+13+1x | | (5x+10)+135-90=360 | | 5n+40=20 | | (5x+10)-170+90=360 | | (5x+10)-135+90=360 | | Y=15x+82 | | x^2+18x-2x^2+60=17 | | 8−0.25x=0.5x+4 |